Abstract

Effects of defoliation on partial shoot removal by decapitation on seedling growth, water use and net gas exchange of remaining basal leaves, were examined in Citrus spp. Shoot and root growth rates were manipulated to test for effects of growth demands on net gas exchange. Partially defoliated plants had higher leaf pressure potentials, root conductivities and rates of water use than intact control plants. Shoot regrowth occurred at the expense of root loss. Basal leaves on defoliated plants consistently had higher rates of CO(2) assimilation (A) than leaves on intact plants. Stomatal conductance (g(s)) changed little after defoliation so the higher A of leaves on defoliated plants lowered the ratio of intercellular to ambient CO(2) concentration (C(i)/C(a)) in the mesophyll. In some cases, g(s) increased with A in defoliated plants but C(i)/C(a) was not affected. Stomatal conductance only limited A when intact seedlings were stressed by root confinement in small pots or when leaves were exposed to high vapor pressure deficits during gas exchange measurements. Increased carbon demand for shoot regrowth increased photosynthetic capacity and was more important than stomatal responses in determining A after partial shoot loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call