Abstract

By proving a summation formula, we enumerate the expansions for the mock theta functions of order 2 in terms of partial mock theta functions of order 2, 3 and 6. We show a relation between Ramanujan`s -function and his sixth order mock theta functions. In addition, we also give the continued fraction representation for and 2nd order mock theta functions and approximants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.