Abstract

Partial serial scan as a design for testability technique permits automatic generation of high fault coverage tests for sequential circuits with less hardware overhead and less performance degradation than full serial scan. The objective of the partial scan flip-flop selection method proposed here is to obtain maximum fault coverage for the number of scan flip-flops selected. Empirical Testability Difference (ETD), a measure of potential improvement in the testability of the circuit, is used to successively select one or more flip-flops for addition or deletion of scan logic. ETD is calculated by using testability measures based on empirical evaluation of the circuit with the acutal automatic test pattern generation (ATPG) system. In addition, once such faults are known, ETD focuses on the hard-to-detect faults rather than all faults and uses heuristics to permit effective selection of multiple flip-flops without global optimization. Two ETD algorithms have been extensively tested by using FASTEST ATPG [1, 2] on fourteen of the ISCAS89 [3] sequential circuits. The results of these tests indicate that ETD yields, on average, 35% fewer uncovered detectable faults for the same number of scanned flip-flops or 27% fewer scanned flip-flops for comparable fault coverage relative to cycle-breaking methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.