Abstract

People with depression and Parkinsonism frequently show effort-related motivational symptoms, such as anergia, psychomotor retardation, and fatigue. Tasks that assess effort-related choice are being used as animal models of these motivational symptoms. The present studies characterized the ability of monoamine oxidase (MAO) inhibitors with varying selectivity profiles to reverse the low effort bias induced by the monoamine storage inhibitor tetrabenazine. Tetrabenazine produces depressive symptoms in humans, and because of its selective inhibition of VMAT-2, it preferentially depletes DA at low doses. Effort-based decision making is studied with tasks offering choices between high effort options leading to highly valued reinforcers vs. low effort/low reward options. Tetrabenazine shifted choice behavior, reducing selection of fixed ratio 5 lever pressing, but increasing intake of the concurrently available but less preferred lab chow. These effects of 0.75mg/kg tetrabenazine were attenuated by co-administration of the MAO-B inhibitor deprenyl (selegiline). The ability of deprenyl to reverse the effects of tetrabenazine was marked by an inverted-U shaped dose response curve, with the middle dose (2.5mg/kg) being effective. In contrast, neither the MAO-A selective antagonist moclobemide nor the nonselective drug pargyline reversed the effects of tetrabenazine, and moclobemide decreased lever pressing when administered alone. Deprenyl was originally developed as an antiparkinsonian drug, but it also has been shown to have antidepressant effects in humans and induce antidepressant-like effects in classical rodent models of depression. These studies have implications for the potential use of MAO-B inhibitors as treatments for the motivational symptoms of depression and Parkinsonism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.