Abstract

In time-sensitive and dynamic missions, multi-UAV teams must respond quickly to new information and objectives. This paper presents a dynamic decentralized task allocation algorithm for allocating new tasks that appear online during the solving of the task allocation problem. Our algorithm extends the Consensus-Based Bundle Algorithm (CBBA), a decentralized task allocation algorithm, allowing for the fast allocation of new tasks without a full reallocation of existing tasks. CBBA with Partial Replanning (CBBA-PR) enables the team to trade-off between convergence time and increased coordination by resetting a portion of their previous allocation at every round of bidding on tasks. By resetting the last tasks allocated by each agent, we are able to ensure the convergence of the team to a conflict-free solution. CBBA-PR can be further improved by reducing the team size involved in the replanning, further reducing the communication burden of the team and runtime of CBBA-PR. Finally, we validate the faster convergence and improved solution quality of CBBA-PR in multi-UAV simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.