Abstract
In this paper the partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold M into a general compact Riemannian manifold N without boundary is considered. Partial results have been obtained for target manifolds that are spheres [12, 4] or homogeneous spaces [6]. The proofs in these special cases relied heavily on the geometry of these manifolds, and cannot be applied to the general case. We prove in this article that the singular set Sing(u) of the stationary weak heat flow satisfies H n ρ (Sing(u))=0, with n=dimension M, where H n ρ is the Hausdorff measure with respect to parabolic metric .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.