Abstract
We present a new set of variables for the reduction of the planetary n-body problem, associated to the angular momentum integral, which can be of any use for perturbation theory. The construction of these variables is performed in two steps. A first reduction, called partial is based only on the fixed direction of the angular momentum. The reduction can then be completed using the norm of the angular momentum. In fact, the partial reduction presents many advantages. In particular, we keep some symmetries in the equations of motion (d'Alembert relations). Moreover, in the reduced secular system, we can construct a Birkhoff normal form at any order. Finally, the topology of this problem remains the same as for the non-reduced system, contrarily to Jacobi's reduction where a singularity is present for zero inclinations. For three bodies, these reductions can be done in a very simple way in Poincare's rectangular variables. In the general n-body case, the reduction can be performed up to a fixed degree in eccentricities and inclinations, using computer algebra expansions. As an example, we provide the truncated expressions for the change of variable in the 4-body case, obtained using the computer algebra system TRIP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.