Abstract

We present a robust method for solution of multilevel non-LTE line transfer problems including the effects of partial frequency redistribution (PRD). This method allows the self-consistent solution for redistribution of scattered line photons simultaneously in multiple transitions of a model atom, including the effects of resonant Raman scattering ({open_quote}{open_quote}cross-redistribution{close_quote}{close_quote}) among lines sharing common upper levels. The method is incorporated into the framework of the widely used non-LTE complete redistribution code MULTI. We have applied this method to the problem of transfer in hydrogen lines in a plane-parallel solar model atmosphere, including cross-redistribution between the H{alpha} and L{beta}, using general redistribution functions for the L{alpha} and L{beta} lines which are not restricted by the impact approximation. The convergence properties of this method are demonstrated to be comparable to that of the equivalent complete redistribution problem. In this solar model, PRD in the L{alpha} line produces the dominant influence on the level populations. It changes considerably the populations of the excited states of hydrogen, as well as the proton number density, in the middle and upper chromosphere, owing to modification of the L{alpha} wing radiation. The population of the hydrogen ground state undergoes only modest changes, however. The influence of cross-redistribution andmore » PRD in L{beta} has a much smaller influence on the level populations but a considerable influence on the wing intensity of the L{beta} line. {copyright} {ital 1995 The American Astronomical Society.}« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.