Abstract
Due to their tremendous antimicrobial properties, silver nanoparticles (AgNPs) have become incorporated into a number of consumer, industrial, and medical applications. However, AgNPs have also been shown to induce a strong cytotoxic response, brought on by an excess of cellular stress, which has severely limited the inclusion of AgNPs in nano-based biological applications, including drug delivery and bioimaging techniques. Previous investigations into magnetic field (MF) exposure have determined the potential of MFs to reduce the stress response in cellular systems; however, the ability of MF to protect cells from AgNPs has never been explored. As such, this study sought to identify if concurrent exposure to AgNPs and a 30-mT static MF could produce a diminishment of the cytotoxic and stress responses in a murine neural stem cell line (NE-4C). We discovered that the presence of MF provided a layer of protection from the negative AgNP effects, with a 15 % increase in viability noted up to a threshold concentration of 10 μg/mL. This partial recovery of AgNP-dependent cytotoxicity was found to correlate with increased ki67 expression and a substantial decrease in the NE-4C stress response including reactive oxygen species generation and NFκB and c-Jun expression. As neurological models are highly susceptible to stress, this study identified MF stimulation as a potential mechanism to counteract detrimental AgNP effects in neural cells, thereby demonstrating that a joint AgNP and MF system may be advantageous to progress neurological nano-based applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.