Abstract
The quasi-likelihood analysis is generalized to the partial quasi-likelihood analysis. Limit theorems for the quasi-likelihood estimators, especially the quasi-Bayesian estimator, are derived in the situation where existence of a slow mixing component prohibits the Rosenthal type inequality from applying to the derivation of the polynomial type large deviation inequality for the statistical random field. We give two illustrative examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.