Abstract
Brush border membranes from renal proximal tubules were solubilized with deoxycholate, and the proteins were incorporated into liposomes formed from cholesterol and phosphatidylserine by a freeze-thaw procedure. In the proteoliposomes Na+-D-glucose cotransport was demonstrated by showing that the D-glucose concentration in the liposomes increased far above the equilibrium value if a Na+ gradient was applied. The initial D-glucose uptake rate, stimulated by an inside directed gradient of 89 mM Na+, was 4 pmol/mg of protein-1 s-1. High affinity phlorizin binding could not be measured. After two precipitation steps with the solubilized membrane proteins, a protein fraction was obtained in which significantly high affinity phlorizin binding was detected. After reconstitution, proteoliposomes were formed in which more than 70% of the protein was represented by two polypeptides with molecular weights of 94,000 and 52,000. An initial Na+ gradient-dependent D-glucose uptake rate of 118 pmol/mg of protein-1 s-1 was obtained. In these liposomes, the D-glucose uptake rate could be inhibited by phlorizin (Ki = 0.3 microM), and 55-pmol phlorizin-binding sites per mg of protein (KD = 0.5 microM) were measured. In different liposomal preparations a correlation between Na+ gradient-dependent D-glucose uptake rate and the amount of 52,000 molecular weight polypeptide was observed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.