Abstract
This paper considers a class of stochastic linear complementarity problems (SLCPs) with finitely many realizations. We first formulate this class of SLCPs as a minimization problem. Then, a partial projected Newton method, which yields a stationary point of the minimization problem, is presented. The global and quadratic convergence of the proposed method is proved under certain assumptions. Preliminary experiments show that the algorithm is efficient and the formulation may yield a solution with various desirable properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.