Abstract
Partial oxidation of methane to syngas at atmospheric pressure and 750°C was examined over Ni/MgO, Ni/CaO and Ni/CeO2 catalysts with nickel loading of 13 wt%. All catalysts had similar high conversion of methane and high selectivity to syngas, which nearly approached the values predicted by thermodynamic equilibrium. However, only Ni/MgO showed high resistance to carbon deposition under thermodynamically severe conditions (CH4/O2 = 2.5, a higher CH4 to O2 ratio than the stoichiometric ratio). Its catalytic activity remained stable during 100 h of reaction, with no detectable carbon deposition. The oxidation of carbon deposited from pure CH4 decomposition and from pure CO disproportionation was investigated by in situ TPO-MS study which showed that both were effectively inhibited over Ni/MgO. In addition, the catalysts were characterized by TPR, XRD and XPS. It was revealed that the excellent performance of Ni/MgO resulted from the formation of an ideal solid solution between NiO and MgO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.