Abstract

BackgroundResection And Partial Liver Segment 2/3 Transplantation with Delayed total hepatectomy (RAPID) includes total hepatectomy in 2 steps with small graft transplantation at first stage. To avoid graft portal hyperperfusion, portal vein pressure monitoring is required after revascularization and right portal vein clamping. To date, portal flow modulation has not been reported but simulating hemodynamics in RAPID patients would be useful to anticipate these procedures.Our team developed hemodynamic 0D modeling; we aimed to assess if this mathematical model could be accurately used in the RAPID setting. MethodsThe modified 0D model was retrospectively tested on 3 patients. We compared our estimated portal vein pressures and portocaval gradients to those intraoperatively measured, as indication to modulate portal flow relies on these measures. FindingsPortal pressures measured after right portal vein clamping (end of RAPID procedure) in patients 1, 2 and 3 were respectively of 14, 16 and 12 mmHg while the simulated pressures were of 13.1, 14.8 and 11.5 mmHg (p = 0.25).Portocaval gradients measured after right portal vein clamping in the 3 patients were respectively of 10, 11 and 7 mmHg while the simulated gradients were of 9.9, 11.6 and 8.3 mmHg (p = 0.5). InterpretationWe succeeded to predict portal vein pressures and portocaval gradients after RAPID. This promising report demonstrates that 0D simulation could be a useful tool for human decision-making. Moreover, such a patient-specific model could be of importance if we transpose RAPID experience to hepatocellular carcinoma bearing cirrhotics, a population with high probability of portal hypertension after RAPID.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call