Abstract

The bacterial toxin pyolysin (PLO) belongs to the family of cholesterol-dependent cytolysins (CDCs), which form large, ring-shaped oligomeric pores in cholesterol-containing membranes. Monomeric CDC molecules have a structure of four domains, with domains 2 and 3 packed against each other. After binding to target membranes containing cholesterol, toxin monomers oligomerize into pre-pore complexes. Trans-membrane pores form when the pre-pores insert into the lipid bilayer. Membrane insertion requires each subunit in the pre-pore to undergo a significant change in conformation, including the separation of domains 2 and 3. We here characterize a pyolysin mutant with an engineered disulfide bond between domains 2 and 3. The disulfide-tethered mutant binds to membranes but does not form oligomers. When mixed with wild type PLO, the two proteins form hybrid oligomers, which are reduced in size and arc-shaped rather than ring-shaped. With equimolar mixtures or the disulfide mutant in slight excess, the hybrid oligomers retain pore-forming activity, while a larger excess of the mutant suppresses pore formation. These results support a "partially cooperative" mode of protein activity, in which a limited number of functional subunits within an oligomer have to cooperate to initiate membrane insertion and pore formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.