Abstract

Underground brine waste containing high concentrations of ammonium and with a salinity of 3% is usually generated during the production of methane gas and iodine in the gas field of Chiba Prefecture, Japan. In this study, one swim-bed reactor, packed with a novel acrylic fiber biomass carrier (Biofringe), was applied to the partial nitritation treatment of this kind of underground brine waste. A stable nitrite production rate of 1.6 kg NO(2)-N m(-3) d(-1) was obtained under a nitrogen loading rate of 3.0 kg-N m(-3) d(-1), at a pH of 7.5 and a temperature of 25 degrees C. Nitrate production was negligible and the effluent NO(2)-N/NO(x)-N ratio was above 98% due to the successful inhibition of nitrite-oxidizing bacterial activity. Free ammonia was considered to be the main factor for inhibiting the activity of nitrite-oxidizing bacteria. A microbial community shift was demonstrated by 16S rRNA analysis, and it was shown that the ammonium-oxidizing bacteria became the predominant species after successful nitrite accumulation was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.