Abstract

This study describes the molecular characterization of avian reoviruses (ARVs) isolated during an outbreak in commercial chickens between 2015 and 2016. In addition, a pathogenicity study of a selected ARV strain isolated from a field case of viral tenosynovitis in commercial broiler chickens was performed. On the basis of phylogenetic analysis of a 1088-bp fragment of the ARV S1 gene, the investigated sequences were differentiated into five distinct genotypic clusters (GCs), namely GC1, GC2, GC3, GC4, and GC6. Specific-pathogen-free (SPF) and commercial broiler chickens were challenged with the GC1 genetic type MK247011, at 14 days of age via the interdigital toe web. No significant effects in body weight gain and feed conversion were detected in both chicken types. The Δ interdigital web thickness was most severe at 4 days postchallenge (DPC) in both the SPF and broiler subgroups. The inflammation in SPF birds was slightly more severe compared with broilers. Neither mortality nor clinical signs occurred in the infected groups for the duration of the experiment, despite the presence of significant microscopic lesions in challenged birds. Microscopic changes of tenosynovitis became evident at 3 DPC, with the highest incidence and severity detected at 14 and 21 DPC, respectively. Seroconversion against ARV occurred 3 wk postchallenge, and the microscopic lesions detected in tendon and heart sections were highly compatible with those described in the field. Increased severity of tenosynovitis and epicarditis lesions were noted in the ARV-challenged groups compared with the control groups. Although SPF and broiler chickens showed comparable responses to the challenge with an ARV genetic variant, detected lesions were subclinical, denoting the limitations of our challenge approach. The age selected in this experiment possibly influenced the course of the infection. Data from this study highlight the genotypic diversity of isolates in California, and the outcome of the pathogenicity study can be used as a basis to improve protocols for pathogenicity studies to characterize ARV variants causing clinical disease in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.