Abstract

Enthalpies of solution have been measured from 5 to 85°C for aqueous tetraethyl- and tetrapropylammonium bromides, and the integral heat method is employed to evaluate\(\bar C_{p_{_2 } }^ \circ \) for these electrolytes over a wide temperature range. Data taken from the literature have been used to evaluate\(\bar C_{p_{_2 } }^ \circ \) for aqueous Bu4NBr over a similar temperature range. These data, along with similar data for Me4NBr, previously reported, have been used to evaluate absolute ionic heat capacities. While the absolute values agree only qualitatively with two other methods of division, the temperature dependences of the three methods essentially agree up to 65°C. Heat capacities due to structural effects on the solvent, obtained by subtracting the inherent heat capacities of the ions, are extraordinarily positive for all four tetraalkylammonium ions and have negative temperature coefficients, indicating that all four ions, including the tetramethylammonium ion, are structure-making ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.