Abstract
The study of partial match queries on random hierarchical multidimensional data structures dates back to Ph. Flajolet and C. Puech’s 1986 seminal paper on partial match retrieval. It was not until recently that fixed (as opposed to random) partial match queries were studied for random relaxed K-d trees, random standard K-d trees, and random 2-dimensional quad trees. Based on those results it seemed natural to classify the general form of the cost of fixed partial match queries into two families: that of either random hierarchical structures or perfectly balanced structures, as conjectured by Duch, Lau and Martinez (On the Cost of Fixed Partial Queries in K-d trees Algorithmica, 75(4):684–723, 2016). Here we show that the conjecture just mentioned does not hold by introducing relaxed K-dt trees and providing the average-case analysis for random partial match queries as well as some advances on the average-case analysis for fixed partial match queries on them. In fact this cost –for fixed partial match queries– does not follow the conjectured forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.