Abstract

ABSTRACTWe study partial linear single-index models (PLSiMs) when the response and the covariates in the parametric part are measured with additive distortion measurement errors. These distortions are modeled by unknown functions of a commonly observable confounding variable. We use the semiparametric profile least-squares method to estimate the parameters in the PLSiMs based on the residuals obtained from the distorted variables and confounding variable. We also employ the smoothly clipped absolute deviation penalty (SCAD) to select the relevant variables in the PLSiMs. We show that the resulting SCAD estimators are consistent and possess the oracle property. For the non parametric link function, we construct the simultaneous confidence bands and obtain the asymptotic distribution of the maximum absolute deviation between the estimated link function and the true link function. A simulation study is conducted to evaluate the performance of the proposed methods and a real dataset is analyzed for illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.