Abstract
This paper illustrates how the use of random set theory can benefit partial identification analysis. We revisit the origins of Manski's work in partial identification (e.g., Manski (1989, 1990)), focusing our discussion on identification of probability distributions and conditional expectations in the presence of selectively observed data, statistical independence and mean independence assumptions, and shape restrictions. We show that the use of the Choquet capacity functional and of the Aumann expectation of a properly defined random set can simplify and extend previous results in the literature. We pay special attention to explaining how the relevant random set needs to be constructed, depending on the econometric framework at hand. We also discuss limitations in the applicability of specific tools of random set theory to partial identification analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.