Abstract

The formation of biogenic materials requires the interaction of organic molecules with the mineral phase. In forming enamel, the amelogenin proteins contribute to the mineralization of hydroxyapatite (HAp). Leucine-rich amelogenin protein (LRAP) is a naturally occurring splice variant of amelogenin that comprises amelogenin's predicted HAp binding domains. We determined the partial structure of phosphorylated and non-phosphorylated LRAP variants bound to HAp using combined solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. New ssNMR measurements in the N-terminus indicate a largely extended structure for both variants, though some measurements are consistent with a partially helical N-terminal segment. The N-terminus of the phosphorylated variant is found to be consistently closer to the HAp surface than the non-phosphorylated variant. Structure prediction was biased using 21 ssNMR measurements in the N- and C-terminus at five HAp crystal faces. The predicted fold of LRAP is similar at all HAp faces studied, regardless of phosphorylation. Largely consistent with experimental observations, LRAP's predicted structure is relatively extended with a helix-turn-helix motif in the N-terminal domain and some helix in the C-terminal domain, and the N-terminal domain of the phosphorylated variant binds HAp more closely than the N-terminal domain of the non-phosphorylated variant. Predictions for both variants show some potential binding specificity for the {010} HAp crystal face, providing further support that amelogenins block crystal growth on the a and b faces to allow elongated crystals in the c-axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.