Abstract
In this chapter, we study some first order classes of partial functional, neutral functional, integro-differential, and neutral integro-differential evolution equations on a positive line \(\mathbb{R}_{+}\) with local and nonlocal conditions when the historical interval H is bounded, i.e., when the delay is finite. In the literature devoted to equations with finite delay, the phase space is much of time the space of all continuous functions on H for r > 0, endowed with the uniform norm topology. Using a recent nonlinear alternative of Leray–Schauder type for contractions in Frechet spaces due to Frigon and Granas combined with the semigroup theory, the existence and uniqueness of the mild solution will be obtained. The method we are going to use is to reduce the existence of the unique mild solution to the search for the existence of the unique fixed point of an appropriate contraction operator in a Frechet space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.