Abstract

We present an improvement to the traditional one-dimensional partial Fourier method by extending the method to multi-dimensions. The modified method allowed a full factor of two savings in time with much better coverage of the central k-space information and, because of this, smaller reconstruction artifacts. The residual magnitude error was found to correlate strongly with the residual phase error. Numerical simulation also indicated that with a priori perfect phase information, the original magnitude image could be perfectly reconstructed with half of the k-space data points in the multi-dimensional case. Simulated, phantom, and human data sets were tested with edge differences ranging from 10% (consistent with variable Gibbs ringing) to 25% (consistent with a blurred version of the object). The method was found to be a valuable adjunct to human imaging for short TR, T1-weighted three-dimensional gradient-echo imaging and magnetic resonance (MR) angiographic methods, especially when short echo times were used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.