Abstract
Theoretical analysis predicts that performing magnetic resonance (MR) imaging with partial (less than 90 degrees) flip angles can reduce imaging times two- to fourfold when lesions with elevated T1 values are being examined. This time savings occurs because repetition time (TR) is reduced when imaging is performed with partial flips. Partial flip MR imaging can also improve signal-to-noise ratio (S/N) in fast body imaging. For this study, analytical tools were used to predict image contrast and S/N for short TR, partial flip sequences. Experimental implementation of the short TR, partial flip sequences that analytical work had predicted would be optimal supported the analytical predictions and demonstrated their validity. Partial flip MR imaging is applicable to reducing imaging time only when the ratio of signal differences to noise exceeds threshold values in conventional MR images. Partial flip sequences can be used to advantage in MR imaging of both the head and the body, and the observed effects are predictable through theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.