Abstract

This paper proposes the use of partial double and triple precision with residue retention as a new arithmetic structure for solving differential equations on microprocessors. It is shown that a residue register, which is the distinguishing feature of the digital differential analyser, improves solution accuracy considerably by suppressing the accumulation of roundoff error, which is generally a problem on short-wordlength machines. Both theory and simulation reveal that by employing partial triple precision with residue retention, better than double-precision accuracy may be achieved with only a single-precision multiplication, whereas, without residue retention, single-precision accuracy only is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.