Abstract

Recently, deep transfer learning (TL) has successfully addressed the problem of fault diagnosis under variable operating conditions. Existing methods default that the source and target domains have the same label space, and solve distribution discrepancy problem under different working conditions by aligning their feature distributions. However, in the practical industry, is unlikely to guarantee the health conditions of the target domain data are consistent with the source domain. Therefore, industrial applications usually face the challenge of more difficult partial domain diagnosis scenarios. In this paper, a deep partial domain adaptation network based on a balanced alignment constraint strategy is proposed to realize cross-domain diagnosis. The proposed method combines balanced augmentation and subdomain alignment, which can effectively facilitate the positive transfer of shared categories. Meanwhile, the conditional entropy minimization is introduced to encourage the predictions of target domain samples with high confidence. The experimental results on the rolling bearing dataset verify the effectiveness and feasibility of the proposed method in handling the actual partial domain fault diagnosis problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.