Abstract

ABSTRACTPartial dislocations and their associated stacking faults are identified as the primary defects responsible for the initial relaxation of tensile-strained layers of fcc structure. The critical thickness for the formation of 90° partial dislocations at the strained interface is almost a factor of two smaller than that predicted for the formation of 60° perfect dislocation. Microstructures revealed by transmission electron microscopy from strained layers of various lattice mismatches and thicknesses agree with the prediction of the standard free-energy minimization model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.