Abstract

We have investigated the partial discharge (PD) due to electrical treeing degradation in low-density polyethylene (LDPE), ethylene - vinyl acetate copolymer (EVA) and ethylene - acrylic acid copolymer (EAA) by a computer-aided partial discharge measurement system which allowed us to obtain phase-resolved PD pulse data. The experimental results revealed that the PD magnitude was strongly affected by the instantaneous applied voltage and that the occurrence of a PD was determined by the time derivative of the applied voltage (). The PD pulse-sequence analysis revealed the following: (i) a PD occurs in a discharge path which consists of a tree trunk and branches extending from the trunk; (ii) in each discharge path at most one PD occurs per half cycle. Based on these facts, a model of PDs due to electrical treeing was proposed. The influences of applied voltage and frequency were investigated by applying a triangular voltage. The number and average magnitude of PDs increased linearly with applied voltage whereas the PD charge per cycle increased quadratically. These results are in good agreement with the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.