Abstract
Accurate identification of partial discharge (PD) and its types is essential for assessing the operating conditions of electrical equipment. To enhance PD pattern recognition under imbalanced and limited sample conditions, a method based on a Deep Autoencoder-embedded Generative Adversarial Network (DAE-GAN) is proposed. First, the Deep Autoencoder (DAE) is embedded within the Generative Adversarial Network (GAN) to improve the realism of generated samples. Then, complementary PD data samples are introduced during GAN training to address the issue of limited sample size. Lastly, the model’s discriminator is fine-tuned with augmented and balanced training data to enable PD pattern recognition. The DAE-GAN method is used to augment data and recognize patterns in experimental PD signals. The results demonstrate that, under imbalanced and small sample conditions, DAE-GAN generates more authentic PD samples with improved probability distribution fitting compared to other algorithms, leading to varying levels of enhancement in pattern recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.