Abstract

Partial differential equation-based applications of multi-scale, multiphysics phenomena have driven the quest for extreme architectural scales since the foundation of modern digital computing and will continue to be principal among a broader set of science drivers for the foreseeable future. However, scientific and engineering drivers ceased long ago to dominate the computing industry and any commercially viable path to the petascale would seem to be through architectures that are assembled from components designed without the balance of resources required by scientific and engineering simulations foremost in mind. Concurrency will be massive and will involve many cores sharing common memory at the finest scales and severely dividing available memory bandwidth. As a result, algorithm designers will have to look beyond the message-passing-based SPMD paradigm that dominates today’s most successful large-scale applications and solver frameworks, with stronger than ever emphasis on locality or operands and synchronization avoidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.