Abstract

A procedure for deriving analytic partial derivatives of the Lambert problem is presented. Using the universal, cosine based Lambert formulation; first order partial derivatives of the velocities with respect to the positions and times are developed. Taking advantage of inherent symmetries and intermediate variables, the derivatives are expressed in a computationally efficient form. The added cost of computing these partials is found to be approximately 10% to approximately 60% of the Lambert compute cost. The availability of analytic partial derivatives increases optimization speed, efficiency and allows for trajectory optimization formulations that implicitly enforce continuity constraints via embedded Lambert problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call