Abstract

Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and β9 loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of β9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the β9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of β9 loop (GPLRP2-Δβ9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-Δβ9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within β9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-Δβ9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.