Abstract

We show that the method of partial covariance is a very efficient way to introduce constraints (such as the centrality selection) in data analysis in ultra-relativistic nuclear collisions. The technique eliminates spurious event-by-event fluctuations of physical quantities due to fluctuations of control variables. Moreover, in the commonly used superposition approach to particle production the method can be used to impose constraints on the initial sources rather than on the finally produced particles, thus separating out the trivial fluctuations from statistical hadronization or emission from sources and focusing strictly on the initial-state physics. As illustration, we use simulated data from hydrodynamics started on the wounded-quark event-by-event initial conditions, followed with statistical hadronization, to show the practicality of the approach in analyzing the forward-backward multiplicity fluctuations. We mention generalizations to the case with several constraints and other observables, such as the transverse momentum or eccentricity correlations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call