Abstract

Biochemical recurrence (BCR) of prostate cancer occurs when the PSA level increases after treatment. BCR prediction is necessary for successful prostate cancer treatment. We propose a model to predict the BCR of prostate cancer using a partial correlation neural network (PCNN). Our study used data from 1021 patients with prostate cancer who underwent radical prostatectomy at a tertiary hospital. There were nine input variables with BCR as the outcome variable. Feature-sensitive and partial correlation analyses were performed to develop the PCNN. The PCNN provides an NN architecture that is optimized for BCR prediction. The proposed PCNN achieved higher performance in BCR prediction than other machine learning methodologies, with accuracy, sensitivity, and specificity values of 87.16%, 90.80%, and 85.62%, respectively. The enhanced performance of the PCNN is owing to the reduction in unnecessary predictive factors through the correlation between the variables that are used. The PCNN can be used in the clinical treatment stage following prostate treatment. It is expected to be used as a clinical decision-making system in clinical follow-ups for prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.