Abstract

One major way that people engage in adaptive problem solving is by imitating others’ solutions. Prominent simulation models have found imperfect imitation advantageous, but the interactions between copying amount and other prevalent aspects of social learning strategies have been underexplored. Here, we explore the consequences for a group when its members engage in strategies with different degrees of copying, solving search problems of varying complexity, in different network topologies that affect the solutions visible to each member. Using a computational model of collective problem solving, we demonstrate that the advantage of partial copying is robust across these conditions, arising from its ability to maintain diversity. Partial copying delays convergence generally but especially in globally connected networks, which are typically associated with diversity loss, allowing more exploration of a problem space. We show that a moderate amount of diversity maintenance is optimal and strategies can be adjusted to find that sweet spot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.