Abstract

This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.