Abstract

Physical systems often exhibit pattern-forming instabilities. Equivariant bifurcation theory is often used to investigate the existence and stability of spatially doubly periodic solutions with respect to the hexagonal lattice. Previous studies have focused on the six- and twelve-dimensional representation of the hexagonal lattice where the symmetry of the model is perfect. Here, perturbation of group orbits of translation-free axial planforms in the six- and twelve-dimensional representations is considered. This problem is studied via the abstract action of the symmetry group of the perturbation on the group orbit of the planform. A partial classification for the behaviour of the group orbits is obtained, showing the existence of homoclinic and heteroclinic cycles between equilibria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.