Abstract

We characterized immunoaffinity-purified, undegraded oat (Avena sativa L., cv. Garry) phytochrome by several physicochemical techniques. Phytochrome, of greater than 98% purity [Hunt, R. E., & Pratt, L. H. (1979) Plant Physiol. 64, 332-336], existed in solution as a dimer of its 118 000-dalton monomers and had a full complement of the typical amino acids with about 35% nonpolar residues, 115 carboxylic acid groups per monomer, and an average of one phosphate per monomer. Although the dimer was not held together by disulfide bridges, each monomer contained three disulfide bonds and 14 reduced cysteines out of a total of 27 cysteine-half-cystine residues. Phytochrome preparations, although very pure, exhibited heterogeneity by discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which revealed three closely spaced bands, and by nondenaturing gel electrophoresis at pH 7.0, which revealed four bands. Amino-terminal analysis indicated two residues, Lys and Ala. Manual Edman degradation yielded Leu and Ala after one round and Val and Leu after a second round. These data indicate a possible amino-terminal sequence of NH3-Lys-Ala-Leu-Val- with some monomers not having Lys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call