Abstract

The platelet-activating factor (PAF) produced by mouse embryos showed similar kinetics of action and dose-response curve, in a bioassay, as did 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphocholine (PAF-acether). The activity of the embryo-derived PAF was not affected by inhibitors of the ADP (pyruvate kinase with phosphoenol pyruvate) or cyclo-oxygenase (indomethacin) pathways of platelet activation. Chlorpromazine, an inhibitor of the PAF-acether pathway of platelet activation, caused a significant inhibition of the effects of embryo-derived PAF. Phospholipases A2, C and D significantly inhibited the activity while lipase had no effect, suggesting a phospholipid structure. All the embryo-derived PAF was found in the chloroform fraction after chloroform:methanol (2:1 v/v) extraction, as was PAF-acether. Both factors migrated at a similar rate (Rf 0.10-0.12) on silica thin-layer chromatography (chloroform:methanol:water; 65:35:4 by vol.). The embryo-derived PAF therefore displays chemical, biochemical and physiological properties similar to those of PAF-acether.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call