Abstract

While atomic disorder has provided a paradigm shift in crystalline materials because of unusual atomic arrangements and functional response, “partial” disorder is scarcely reported until now. We discovered partial cation disorder in Li2MnO3 with fewer stacking faults, which was synthesized under high pressure. Mn and Li atoms in a Mn2/3Li1/3O2 layer disorder while Li atoms in a Li layer order. Magnetization and specific heat measurements indicate a long-range antiferromagnetic (AF) order below 35 K. The irreversibility observed in the magnetization data and the hump observed for the specific heat data suggest the coexistence of an AF order and a partial magnetic disorder. Neutron diffraction measurements reveal that the coexisted state is formed instead of the Néel AF state that has previously been reported for conventional Li2MnO3. These results indicate that high pressure makes a breakthrough to introduce partial disorder within crystals and designs not only a unique magnetic structure but also other physical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.