Abstract
Despite new minimally invasive techniques, cardiopulmonary bypass (CPB) is still necessary for many major operations in the field of cardiac surgery. Unwanted side effects of CPB are well known but poorly understood. We therefore developed a rodent model to study the pathophysiology of these potential complications. Male Fischer rats were anaesthetized, intubated and ventilated. The carotid artery and jugular vein were cannulated. The blood was actively drained from the venous circulation and further transferred by a miniaturized roller pump to a hollow fibre oxygenator and back to the animal via the carotid artery. The roller pump produces a pulsatile blood flow between 5 and 40 ml/min. The surface of the hollow fibre oxygenator is 0.025 m2. The priming volume (Ringer solution) of the whole system is 12 ml. Animals were catheterized and brought in partial bypass for a mean of 50+/-15 min. Normal cardiac function after successful weaning was confirmed by electrocardiography and blood pressure measurements. This technical study demonstrates the feasibility of a small animal model of CPB. The main improvement over existing techniques is the use of a highly effective hollow fibre oxygenator with a minimized priming volume. Therefore, no additional animals are needed as blood donors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.