Abstract

Four partial carbonized nanoporous resins (PCNRs), based on organic xerogel compounds, were synthesised by the sol-gel method from pyrogallol and formaldehyde mixtures in water using picric acid as catalyst. The PCNRs were prepared at different pyrolysis temperatures: T(1) = 200 °C (PF-200), T(2) = 300 °C (PF-300), T(3) = 400 °C (PF-400), or T(4) = 500 °C (PF-500). The PCNRs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and nitrogen porosimetry. The obtained results show that PF-200 is more efficient for the removal of Pb(2+) from aqueous solution than the other adsorbent prepared in this study. The characteristics of lead uptake by PF-200 were explored using well-established and effective parameters including pH, contact time, initial metal ion concentration and temperature. Optimum adsorption of Pb(2+), using PF-200, was observed at pH 4.5. The Langmuir model gave a better fit than the other models, and kinetic studies revealed that the adsorption was well fitted by the pseudo second-order kinetic model and thermodynamic properties, i.e., Gibbs free energy change, enthalpy change and entropy change, showed that adsorption of Pb(2+) onto PF-200 was endothermic, spontaneous and feasible in the temperature range of 298-328 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.