Abstract

Brief periods of in vitro hypoxia/ischemia induce apoptosis of cultured renal epithelial cells, but the underlying mechanisms remain unknown. We show that partial ATP depletion (approximately 10-65% of control) results in a duration-dependent induction of apoptosis in Madin-Darby canine kidney (MDCK) cells, as evidenced by internucleosomal DNA cleavage (DNA laddering and in situ nick end labeling), morphological changes (cell shrinkage), and plasma membrane alterations (externalization of phosphatidylserine). The ATP-depleted cells display a significant upregulation of Fas, Fas ligand, and the Fas-associating protein with death domain (FADD). Exogenous application of stimulatory Fas monoclonal antibodies also induces apoptosis in nonischemic MDCK cells, indicating that they retain Fas-dependent pathways of programmed cell death. Furthermore, cleavage of poly(ADP)ribose polymerase (PARP) is evident after ATP depletion, indicating activation of caspases. Indeed, the apoptotic cells display a significant increase in caspase-8 (FLICE) activity. Finally, apoptosis induced by ATP depletion is ameliorated by pretreatment with inhibitors of caspase-8 (IETD), caspase-1 (YVAD), or caspase-3 (DEVD) but is not affected by inhibitors of serine proteases (TPCK). Our results indicate that partial ATP depletion of MDCK cells results in apoptosis and that Fas- and caspase-mediated pathways may play a critical role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.