Abstract

A pair of common dormice discovered while torpid in their natural hibernaculum on December 5, was studied continously outdoors, exposed to natural fluctuations in temperature and rainfall. Temperature inside and outside the nest ball and motor activity were recorded. The first emergence from hibernaculum occurred on March 4, after which the dormice were daily active, chiefly during evening and night hours. Nest departures lasted on average 10.5 h (6.5-14 h) per day.During the 88 days while the animals remained in the hibernaculum ambient temperature ranged from -5° to 8.5° C. Nest temperature never fell below zero, being chiefly 1.0°C above ambient temperature during 68 of these days and thus reflecting deep hibernation in both animals. However, on 19 occasions nest temperature was raised steeply from average 5.6°C (2.0-8.0°C) to average 23.0°C (17.5-32.5°C). These increases of nest temperature, lasting roughly 4 h (3-8 h) are interpreted as partial arousals. The total duration of partial arousals was 76 h, i.e. 3.6% of the time during which the animals remained consistently in the nest.The interarousal time varied, being 16 days at the most and 12 h at the least. The frequency of arousals increased with rising maximum values of ambient temperature, and partial arousals never were recorded on days when temperature remained below 2°C. It is believed that partial arousals correspond to the periodic or spontaneous arousals previously recorded in laboratory experiments of some other hibernating mammals. However, the energetic expenditure seems to be smaller during periodic arousals because of their shorter duration and the fact that no departure from the hibernaculum occurs.Possible mechanisms governing partial arousals are discussed. As these events chiefly occurred during night they may partly be controlled by an inherent time sense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.