Abstract

In this paper we study partial-approximate controllability of semilinear nonlocal fractional evolution equations in Hilbert spaces. By using fractional calculus, variational approach and approximating technique, we give the approximate problem of the control system and get the compactness of approximate solution set. Then new sufficient conditions for the partial-approximate controllability of the control system are obtained when the compactness conditions or Lipschitz conditions for the nonlocal function are not required. Finally, we apply our abstract results to the partial-approximate controllability of the semilinear heat equation and delay equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.