Abstract

When applied to multimass velocity-map imaging data, covariance analysis reveals correlations between different fragment ions formed from the same parent molecule and can provide detailed insights into the fragmentation dynamics. Covariances between the time-of-flight signals for two different ions show that they are formed in the same event, while covariances between their velocity-map images, often referred to as "recoil-frame covariances", reveal details of the correlated motion of the two fragments. In many cases, covariance analysis is complicated by the fact that fluctuations in experimental parameters such as laser or molecular beam intensities can lead to apparent correlations between unrelated ions. In the context of time-of-flight covariance signals, this problem has been overcome by the introduction of partial covariance and contingent covariance approaches. Here, we apply these approaches to recoil-frame covariance-map images. We also demonstrate that in many cases the total signal within each experimental cycle can be used as a useful proxy for independent explicit measurements of the varying experimental parameter(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.