Abstract

In this paper, we propose a part-activated deep reinforcement learning (PA-DRL) method for action prediction. Most existing methods for action prediction utilize the evolution of whole frames to model actions, which cannot avoid the noise of the current action, especially in the early prediction. Moreover, the loss of structural information of human body diminishes the capacity of features to describe actions. To address this, we design the PA-DRL to exploit the structure of the human body by extracting skeleton proposals under a deep reinforcement learning framework. Specifically, we extract features from different parts of the human body individually and activate the action-related parts in features to enhance the representation. Our method not only exploits the structure information of the human body, but also considers the saliency part for expressing actions. We evaluate our method on three popular action prediction datasets: UT-Interaction, BIT-Interaction and UCF101. Our experimental results demonstrate that our method achieves the performance with state-of-the-arts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.