Abstract
Laser powder bed fusion (LPBF) uses a focused, high power laser to repeatedly scan geometric patterns on thin layers of metal powder, which build up to a final, solid three-dimensional (3D) part. This process is somewhat limited in that the parts tend to have poorer surface finish (compared to machining or grinding) and distortion due to residual stress, as well as multiple other deficiencies. Typical laser scan strategies are relatively simple and use constant laser power levels. This elicits local variations in the melt pool size, shape, or temperature, particularly near sharp geometric features or overhang structures due to the relatively higher thermal conductivity of solid metal compared to metal powder. In this paper, we present a new laser power control algorithm, which scales the laser power to a value called the geometric conductance factor (GCF). The GCF is calculated based on the amount of solid vs. powder material near the melt pool. The algorithm for calculating GCF is presented along with some basic examples for clarification. Then, we detail the hardware and software implementation on the National Institute of Standards and Technology (NIST) additive manufacturing metrology testbed (AMMT), which includes co-axial melt pool monitoring using a high-speed camera. Six parts were fabricated out of nickel superalloy 625 (IN625) with the same nominal laser power, but with varying GCF algorithm parameters. We demonstrate the effect of tailored laser power on reducing the variability of melt pool intensity measured throughout the 3D build. Finally, we contrast the difference between the ‘optimized’ part vs. the standard build parameters, including the deflection of the final part top surface near the overhang and the variation of surface finish on the down-facing surfaces. Ultimately, the improvements to the in-situ process monitoring and part qualities demonstrate the utility and future potential tuning and optimizing more complex laser scan strategies.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.