Abstract
Though a plethora of functional magnetic resonance imaging (fMRI) studies explored the neurobiological underpinnings of borderline personality disorder (BPD), findings across different tasks were divergent. We conducted a systematic review and activation likelihood estimation (ALE) meta-analysis on the fMRI studies conducted in BPD patients compared to healthy controls (HC). We systematically searched PubMed and PsychINFO from inception until July 9th 2020 using combinations of database-specific terms like ‘fMRI’, ‘Neuroimaging’, ‘borderline’. Eligible studies employed task-based fMRI of the brain in participants of any age diagnosed with BPD compared to HC, during any behavioral task and providing a direct contrast between the groups. From 762 entries, we inspected 92 reports full-texts and included 52 studies (describing 54 experiments). Across all experiments, the HC > BPD and BPD > HC meta-analyses did not yield any cluster of significant convergence of differences. Analyses restricted to studies of emotion processing revealed two significant clusters of activation in the bilateral hippocampal/amygdala complex and anterior cingulate for the BPD > HC meta-analysis. Fail-safe N and single study sensitivity analysis suggested significant findings were not robust. For the subgroup of emotional processing experiments, on a restricted number of experiments providing results for each group separately, another meta-analysis method (difference of convergence) showed a significant cluster in the insula/inferior frontal gyrus for the HC > BPD contrast. No consistent pattern of alteration in brain activity for BPD was evidenced suggesting substantial heterogeneity of processes and populations studied. A pattern of amygdala dysfunction emerged across emotion processing tasks, indicating a potential pathophysiological mechanism that could be transdiagnostic.
Highlights
Introduction According to the Diagnostic andStatistical Manual of Mental Disorders 5th edition (DSM 5), Borderline personality disorder (BPD) is characterized by a pervasive pattern of instability referred to interpersonal relationship, self-image and affects together with marked impulsivity and emotional dysregulation[1]
Eligible studies (1) employed task-based functional Magnetic Resonance Imaging (fMRI) of the brain in (2) participants of any age diagnosed with BPD according to the DSM IV, IV-TR or 5, based on diagnostic interviews, with or without comorbid disorders, (3) compared to a matched healthy control group (HC), during (4) any behavioral task using the same experimental paradigm was used for both BPD and healthy controls (HC), and had to include (5) a direct univariate comparison of brain activation between BPD and HC (i.e., BPD > BPD and/or BPD > HC), for which (6) 3D coordinates of peak activations in stereotactic space of the Montreal Neurological Institute (MNI) or Talairach were reported, and (7) whole-brain analysis were employed
40 reports were further excluded due to (1) lack of direct univariate comparison between BPD and HC (n = 9); (2) comparison restricted to functional connectivity analysis (n = 5); (3) non-significant results for the comparison (n = 4); (4) Region of Interest (ROI) only reported (n = 21); (5) reanalyses of previous, already included, studies or paper reported no new results (n = 1)
Summary
Introduction According to the Diagnostic andStatistical Manual of Mental Disorders 5th edition (DSM 5), Borderline personality disorder (BPD) is characterized by a pervasive pattern of instability referred to interpersonal relationship, self-image and affects together with marked impulsivity and emotional dysregulation[1]. We conducted a systematic review and activation likelihood estimation (ALE) meta-analysis on the fMRI studies conducted in BPD patients compared to healthy controls. The meta-analytical technique considers nuclei of activation reported in single experiments as spatial probability distributions centered at the coordinate itself. These distributions are used for the generation of a brain map representing the likelihood of activation of each candidate location[15]. We expected that associated neurobiological dysfunctions would impact other mental functions and emerge consistently across studies, despite the use of different tasks or evaluation domains
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.